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We extend the recently developed real-time diagrammatic Monte Carlo method, in its hybridization expan-
sion formulation, to the full Kadanoff-Baym-Keldysh contour. This allows us to study real-time dynamics in
correlated impurity models starting from an arbitrary, even interacting, initial density matrix. As a proof of
concept, we apply the algorithm to study the nonequilibrium dynamics after a local quantum quench in the
Anderson impurity model. Being a completely general approach to real-time dynamics in quantum impurity
models, it can be used as a solver for nonequilibrium dynamical mean field theory.
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I. INTRODUCTION

The understanding of real-time dynamics in strongly cor-
related quantum systems represents a major challenge in
modern condensed matter physics, due to the rapid experi-
mental advances in probing physical responses directly in the
time domain.1 Time resolved pump-probe experiments with
femtosecond resolution, for example, have been recently
moving from the realm of atoms and molecules2 to that of
strongly correlated bulk materials, such as Mott insulators3

and high-temperature superconductors,4 thus opening the
way toward a full characterization of their nonequilibrium
properties. Similarly, the emerging field of cold atomic quan-
tum gases represents a natural laboratory where the dynamics
of almost isolated quantum systems can be probed in real
time. Several experiments have been performed in this direc-
tion to measure, for instance, the dynamics after a quantum
quench in bosonic gases,5 the lifetime of doublons in
strongly interacting Fermi systems6 or the onset of superex-
change interactions between ultra cold atoms in optical
lattices.7 Finally, we note that even at the nanoscale level the
experimental frontiers are rapidly moving in the direction of
time-resolved techniques to detect charge transport by count-
ing individual electrons while tunneling across correlated
nanostructures such as semiconducting quantum dots.8–10

From the theoretical point of view, the field of real-time
dynamics in strongly correlated systems is still at its infancy.
In this perspective, quantum impurity �QI� models represent
the ideal playground to test and develop methods. These
models consist of a small quantum system with few interact-
ing degrees of freedom, the impurity, coupled via hybridiza-
tion to a reservoir of fermionic excitations. QI models there-
fore represent, by construction, the natural framework to
study quantum transport through nanocontacts. While the
equilibrium physics of these nutshell strongly correlated sys-
tems can be studied with a wide range of powerful numerical
and analytical tools, their nonequilibrium real-time dynamics
is still challenging. The reason for this gap is mainly due to
the fact that most of the theoretical tools which has been
developed in the last thirty years to solve quantum impurity
models in equilibrium, most notably numerical renormaliza-
tion group11,12 �NRG�, cannot be directly applied to the out
of equilibrium case. This has triggered a large number of
theoretical works among which we mention the time-

dependent �NRG�,13 the time-dependent density matrix
renormalization group �DMRG�,14,15 the iterative path inte-
gral approach �ISPI�16 and the flow equation method.17

Besides their relevance for nanoscience, QI models have
also been emerging in the last two decades as the paradigm
to understand strong correlation phenomena in bulk lattice
models within the so called dynamical mean field theory.18

The extension of this powerful nonperturbative technique to
the nonequilibrium domain19,20 makes the development of a
generic numerically exact approach to real-time dynamics in
quantum impurities an even more urgent issue.

Recently, a new generation of diagrammatic Monte Carlo
�diagMC� algorithms has been developed to solve equilib-
rium quantum impurity models. These are based on a sto-
chastic sampling of the partition function written as an
imaginary-time diagrammatic expansion around weak or
strong coupling values of the interaction acting on the
impurity.21,22 An extension to the out of equilibrium case,
namely, to the real-time domain, has been proposed only
very recently. The general idea of real-time diagMC methods
is to start from a given initial density matrix, describing the
fermionic reservoir and the impurity, and to compute the
dynamics of any observable of the system by sampling the
real-time evolution operator written as a diagrammatic ex-
pansion along the Keldysh contour. Both the weak and the
strong coupling expansion have been proposed and applied
to the local polaron problem23,24 and to the Anderson impu-
rity model.25 By construction, these approaches rely on a
rather specific assumption on the initial density matrix,
which has to describe either a noninteracting impurity model
or an impurity decoupled from the reservoir. Going beyond
this assumption, which is technical rather than fundamental,
is the main motivation for this work. To this extent we merge
together the imaginary time and the real-time methods thus
developing a completely general Diagrammatic Monte Carlo
algorithm on the full three-branches Kadanoff-Baym-
Keldysh contour.26,27 This allows us to deal with the most
generic nonequilibrium setup, namely, an interacting quan-
tum impurity model described at time t=0 by some thermal
density matrix, driven out of equilibrium for time t�0 by a
generic, possibly time dependent, perturbation. As a byprod-
uct, we obtain a general real-time solver for quantum impu-
rity models which can be therefore used to solve nonequilib-
rium dynamical mean field theory. Even in this context, the
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possibility of studying the nonequilibrium real-time dynam-
ics starting from interacting initial states look particularly
intriguing in the light of first Dynamical Mean Field Theory
�DMFT� results on quantum quenches in the Hubbard
model,20 which focus so far only on quenches starting from a
noninteracting initial state.

As a first application of this algorithm, we study the non-
equilibrium real-time dynamics in the Anderson Impurity
model after a local quantum quench.

The paper is organized as follows. In Sec. II, we introduce
the formalism. In Sec. III, we derive the hybridization expan-
sion on the Kadanoff-Baym-Keldysh contour while Sec. IV
is devoted to the description of the diagMC algorithm. Sec-
tion V describes the application to the Anderson impurity
model while Sec. VI is for conclusions and perspectives.

II. NONEQUILIBRIUM DYNAMICS IN QUANTUM
IMPURITY MODELS

The aim of this section is to set up the proper framework
to study nonequilibrium real-time dynamics in quantum im-
purity models. To this purpose, we consider a set of discrete
electronic levels, the “impurity,” with creation operator ca

†

labeled by an integer a=1, . . . ,N, which may include both
spin and orbital degrees of freedom. These levels are coupled
to one or more baths of free fermions with momentum k and
creation operator fka

† . The generic Hamiltonian of a QI model
reads

H− = �
ka

�k
−fka

† fka + Hloc
− �ca

†,ca� + �
ka

�Vka
− fka

† ca + h.c.� ,

�1�

where the first term describes the continuum of fermionic
excitations, the local Hamiltonian Hloc

− �ca
† ,ca� generally con-

tains many-body interactions for electrons on the impurity,
while the last term is the hybridization, which couples the
impurity and the bath and it is assumed here, for the sake of
simplicity, to be diagonal in the a index.

Since we are interested in studying nonequilibrium dy-
namics of model �1�, we have to specify an initial condition
as well as a protocol to drive this system out of equilibrium.
Following general ideas of nonequilibrium many body
theory,26,27 we imagine to prepare the system at t=0 in a
thermal state of H−, namely, we choose the Boltzmann dis-
tribution as initial density matrix

��t = 0� = �eq �
e−�H−

Z
, Z = Tr e−�H−, �2�

and then, for t�0, let the system evolve under the action of
a new Hamiltonian

H�t� = H− + V�t�, t � 0. �3�

Choosing the initial density matrix as the thermal one gives
access to the response of a correlated quantum impurity
model to external fields. As we shall discuss in what follows,
Eq. �2� represents the main point where our approach differs
from previous implementations of the real-time diagram-
matic Monte Carlo method.23–25 For what concerns the driv-

ing protocol, namely, the nature of the external perturbation,
there are actually several ways to push a quantum impurity
model out of equilibrium. In this work, we shall focus on the
simplest one, namely, a quantum quench experiment, but the
method allows to address even more general time dependent
out of equilibrium problems.

In a quantum quench, one imagines to prepare the system,
at t=0, in a given state of some initial Hamiltonian �H− in
the case of our interest� and then, for t�0, to suddenly
change some of its parameters letting evolve the system un-
der the unitary action of a new Hamiltonian H+. Such a
protocol therefore represents the simplest example of time-
dependent problem where the variation in time is steplike

H�t� = H− + ��t��H, �H = H+ − H−. �4�

The sudden quench injects energy into the system and leads
to a relaxation dynamics toward a new steady state, provided
the perturbation �H is not a conserved quantity of H−. The
main task is therefore to compute quantum averages with the
full density matrix ��t� evolved in real-time

�O�t�� = Tr���t�O� = Tr��eqU
†�t�OU�t�� . �5�

where the trace has to be taken over the bath and the impu-
rity degrees of freedom, while U�t� and U†�t� are, respec-
tively, the unitary operator generating the dynamics and its
hermitian conjugate. In the specific case of a time indepen-
dent Hamiltonian, as we have for t�0, see Eq. �4�, these
operators read

U�t� = e−iH+t U†�t� = eiH+t. �6�

To proceed further, it is convenient to specify the nature of
the perturbation �H induced by the quantum quench. To
keep the discussion as general as possible, we write the
Hamiltonian of the system for t�0 as

H+ = �
ka

�k
+fka

† fka + Hloc
+ �ca

†,ca� + �
ka

�Vka
+ fka

† ca + h.c.� ,

�7�

Namely, we allow for an abrupt change of all the parameters
entering in the Hamiltonian �1�, in such a way that different
kind of nonequilibrium phenomena can be treated within the
present approach. One can, for example, study the dynamics
after a local quantum quench acting only on the impurity
degrees of freedom, or considering a global change in the
Hamiltonian, acting on the hybridization term or even on the
conduction band. These global quantum quenches are par-
ticularly relevant for studying dc transport in quantum dots
and will be the subject of a forthcoming publication.

Once we have specified the structure of the Hamiltonian
after the quench, we can perform the hybridization expansion
in complete analogy to what has been done previously in the
case of a pure Keldysh real-time algorithm23–25 with, none-
theless, an important difference. Indeed, as it appears clearly
from the above formulation �see Eq. �5��, not only the real-
time evolution but also the “thermal” one is governed by the
full Hamiltonian H�, involving both the impurity and the
bath degrees of freedom coupled one to each other. This
allows us to overcome the limitation of the pure Keldysh
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approach, which relies on the assumption of an initially de-
coupled density matrix and gives us the possibility to treat
arbitrary initial conditions. In the next sections, we will de-
scribe the Diagrammatic Monte Carlo algorithm used to
compute the real-time average in Eq. �5�.

III. HYBRIDIZATION EXPANSION ON THE KADANOFF-
BAYM-KELDYSH CONTOUR

In order to study the nonequilibrium real-time dynamics
of quantum impurity models starting from a generic initial
density matrix, we formulate the diagrammatic Monte Carlo
algorithm, in its hybridization expansion version, on the
Kadanoff-Baym-Keldysh contour made by the usual imagi-
nary time axis and the real-time Keldysh contour. As we are
going to show, this structure naturally emerges from the defi-
nition of real-time quantum averages given in Eq. �5�. To
proceed further, we introduce a dynamical time-dependent
partition function for the QI model, which is defined as

Z�t,�� � Tr�e−�H0U†�t�U�t�� . �8�

We note that this quantity does not actually depend on time t
since, by construction, the evolution is unitary, nevertheless,
it represents the natural quantity to derive the hybridization
expansion. As it will appear more clearly later on, Z�t ,��
can be seen a dynamical generating functional of the Monte
Carlo weights needed to compute any quantum average in
real-time. The basis of any continuous-time diagMC algo-
rithm is the expression of evolution operators as time-
ordered exponentials. For the real-time operator and its her-
mitian conjugate, we get

U�t� = T exp	− i

0

t

dtH+�t�� , �9�

U†�t� = T exp	i

0

t

dtH+�t�� , �10�

where T�T� is the time ordering �antitime ordering� operator,
whose action is order a string of real-time fermionic opera-
tors according to their time arguments, placing to the left the
operators at later �earlier� times, with an overall plus or mi-
nus sign according, respectively, to the parity of the number
of fermionic exchanges needed to move the string from the
original to the final ordering. Using the well-known proper-
ties of the equilibrium density matrix �2� we can write also
the Boltzmann weight as an imaginary time evolution along
the path �−i� ,0�

e−�H− = T exp	− 

0

�

d�H−�− i���
= T� exp	− i


0

−i�

dtH−�t��
= U�− i�� , �11�

where T� is an imaginary-time-ordering operator defined in
complete analogy with T.

Inserting these expressions in the dynamical partition
function previously introduced, we get

Z�t� = Tr�T�ei�−i�
0 dtH−�t�Tei�0

t dtH+�t� Tei�t
0dtH+�t�

= Tr�TCei�CdtH�t�� , �12�

where, in the second line, C is the Kadanoff-Baym-Keldysh
contour plotted in Fig. 1, which is made of three branches Bi,
i=1,2 ,3, being, respectively, the upper real-time branch, the
lower one and the imaginary-time branch. Hereafter, the time
argument t in Eq. �12� is assumed to live on such a contour,
unless differently specified. Time ordering along C, enforced
by operator TC, acts similarly to the standard Keldysh time-
ordering, placing operators with later time on the left,
namely,

TC�A�t1�A�t2�� =  A�t1�A�t2� t1�
C

t2

− A�t2�A�t1� t1	
C

t2
� , �13�

where �
C

�	
C

� means greater �lesser� on the contour C. By the
definition of the partition function Z�t�, it follows that

TC = T� � T � T . �14�

The integral along the contour is defined as



C

dt = 

−i�

0

dt + 

0

t

dt + 

t

0

dt , �15�

while, along the contour, the Hamiltonian entering in Eq.
�12� is

H�t� = �t � B1,B2 H+

t � B3 H−
� �16�

Once we have written the partition function Z�t ,�� as a time
ordered exponential, we can treat different terms in the con-
tour Hamiltonian as c numbers. Therefore, we can write Eq.
�12� as

Z�t,�� = Tr�TCei�CdtH0�t�+Hhyb�t�� , �17�

where we have explicitly indicated the hybridization Hamil-
tonian Hhyb�t�, defined as

Hhyb�t� = �
ka

�Vka�t�fka
† �t�ca�t� + h.c.� , �18�

with a time dependent hybridization Vka�t�=Vka
� depending

on the position of time t along the contour C. To proceed
0

−i

t

β

FIG. 1. Kadanoff-Baym-Keldysh contour, which starts at time 0
on the first branch, runs up to time t= t� then back from t� to t=0
and finally along the imaginary axis from t=0 to t=−i�.
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further, it is convenient to introduce the bath operators at the
impurity site, defined as

fa
†�t� = �

k
Vka�t�fka

† �t� , �19�

which enter the hybridization Hamiltonian equation �18�.
Then we formally expand Z�t ,�� in power of the hybridiza-
tion Hamiltonian �18� and trace out, at any order in the ex-
pansion, separately the bath and the impurity degrees of free-
dom, which are completely decoupled in the absence of
Hhyb. Let us define nab �ñab� as the number of creation�anni-
hilation� impurity operators, in the following also called
kinks, with flavor a and in branch b. These integers run in
general between zero and infinity, the only constraint is that
the total number of creation and annihilation kinks for each

flavor a, say ka and k̃a, have to be equal due to total particles
conservation. This introduces the following constraint:

k̃a � �
b

ñab � ka � �
b

nab a = 1, . . . ,N .

The resulting expansion for the partition function reads

Z�t,�� = �
a=1

N

�
b=1

3

�
ñab,nab

s�ñab,nab��
i

ka 
 dti
a



 dt̃i
a�

a

�TCf�t1
a�f†�t̃1

a� . . . f�tka

a �f†�t̃ka

a ��bath


 �TC�
a

�c†�t1
a�c�t̃1

a� . . . c†�tka

a �c�t̃ka

a ���local, �20�

where the contour integrals must be constrained to the time
ordered regions

t1
a�

C

t2
a�

C

. . . �
C

tka

a , t̃1
a�

C

t̃2
a�

C

. . . �
C

t̃ka

a , �21�

while s�ñab ,nab� includes all the signs�phases� coming from
the real-time evolution operators as well as from the integra-
tion along the imaginary time axis

s�ñab,nab� = �− i�ña3+na3iña2+na2�− i�ñ1a+n1a. �22�

By using our definition of the total number of kinks k we can
write these factors as

s�ñab,nab� = �− 1�ka�− 1�ña2+na2�− i�ña3+na3. �23�

Concerning the trace over the bath degrees of freedom with
flavor a, this can be written by using Wick’s theorem as the
determinant of a ka
ka matrix �a

�TCf�t1
a�f†�t̃1

a� . . . f�tka

a �f†�t̃ka

a ��bath = det �a, �24�

whose entries �ij
a are the contour-ordered hybridization func-

tions defined as

�ij
a � i�C�ti

a, t̃ j
a� = �

k
Vka�ti

a��TCfk�ti
a�fk

†�t̃ j
a��Vka�t̃ j

a� ,

�25�

the average being taken over the bath degrees of freedom.
This function is defined along the Kadanoff-Baym-Keldysh

contour and therefore naturally acquires the structure of a
3
3 matrix in the branch space,28 as we discuss in the Ap-
pendix.

Unlike what happens for the bath, the trace over the local
Hilbert space cannot be written in terms of single particle
contractions since in general Wick’s theorem does not hold
for an interacting impurity. This consideration holds regard-
less of the specific form of the local Hamiltonian Hloc and it
is also true in equilibrium. It is therefore clear that the evalu-
ation of the local term in Eq. �20� for a given configuration
of kinks is the computational bottleneck of the algorithm,
especially in the case where multi-orbital interactions are
considered. We note that such a kind of expressions arise
also in NCA-kind of approaches to QI models.29 To effi-
ciently evaluate this local term we follow30,31 and take ad-
vantage of the reduced hilbert space of the impurity to write
the multipoint correlation function of Eq. �20� in the basis of
the local eigenstates. The trace then reduces to multiplying
matrices sandwiched by local evolution operators. If we de-
fine a global time ordering along the contour such that

t1 � t2 � . . . � t2N,

where N=�aka=�ak̃a, then the local trace can be written as

�TC�a
�c†�t1

a�c�t̃1
a� . . . c†�tka

a �c�t̃ka

a ���local

= sTC
Tr��locX1�t1�X2�t1� . . . XN�tN�� , �26�

where we have introduced an extra sign sTC
due to time

ordering. In the previous equation, the X’s are creation or
annihilation operators �depending on the time ordering�
evolved in time with the local Hamiltonian

Xl�tl� = eiHloctlXle
−iHloctl l = 1, . . . ,2N . �27�

Combining all the above results, we write the hybridization
expansion for the dynamical partition function as

Z�t,�� = �
a=1

N

�
b=1

3

�
ñab,nab

s�ñab,nab��
i

ka 
�
dti

a



�dt̃i
a�

a

Det��a�sTC
Tr��locX1�t1� . . . X2N�t2N�� .

�28�

It is worth noticing that this expression represents an exact
result for the partition function of the original quantum im-
purity model. As we are going to show in the next section,
the goal of the diagrammatic Monte Carlo method is to sum
up stochastically the hybridization expansion using a Me-
tropolis algorithm.

Effective action formulation and nonequilibrium DMFT

An important outcome of the previous calculation has
been to obtain an exact and closed expression for the dy-
namical partition function Z�t ,�� of the quantum impurity
model, written as a functional of the contour-ordered hybrid-
ization �C�t , t��. This result holds in general. Indeed, right
the same expression for Z�t ,�� is recovered within a path
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integral formulation of the problem. Following Kamenev,32

we define the dynamical partition function Z�t� as a path
integral over the fermionic coherent states c�t� , c̄�t� defined
along the three branch contour

Z�t� =
 �
a

Dc̄aDcaeiSeff�ca,c̄a�. �29�

The effective action describing the real-time dynamics of the
impurity model can be written generally as

iSeff = iSloc + 

C

dt

C

dt��
a

ca�t��i�C
a �t,t��c̄a�t� , �30�

where Sloc is the local-in-time impurity action while the qua-
dratic part is defined in terms of the contour-ordered hybrid-
ization function i�C�t , t��, which takes into account the cou-
pling to the bath. It is worth noticing here that, by
construction, time arguments lie along the three-branch con-
tour C, while the integrals are defined as in Eq. �15�. As a
consequence, the contour-ordered hybridization function
naturally acquires a 3
3 matrix structure in the Keldysh-
Matsubara space,

i�C�t,t�� → i����t,t�� �,� = 1,2,3, �31�

where the 2
2 block with � ,��3 is the Keldysh subspace,
the last diagonal element �=�=3 is the Matsubara sector
while the remaining off-diagonal terms are mixed hybridiza-
tion functions describing the effect of the initial condition.
We want to show now how is possible within this framework
to recover the result for hybridization expansion we previ-
ously derived. The idea is to formally expand the effective
action in power of the contour-ordered hybridization i�C and
use the definition of path-integral as the contour time-
ordered average of field-operators32 to get for the partition
function Z�t� the following expansion:

Z�t� = �
a

�
ka

�− 1�ka

ka!



C
dt1

adt̃1
a . . .



Cdtka

a dt̃ka
i�C

a �t1
a, t̃1

a� . . . i�C
a �tka

a , t̃ka

a �


�TC�
a

�c†�t1
a�c�t̃1

a� . . . c†�tka

a �c�t̃ka

a ��� , �32�

where the average is taken over the initial local density ma-
trix. To proceed, we symmetrize the integrand with respect to
the ka! permutations of creation times �t1

a , t2
a , . . . , tka

a � resulting
into an extra 1 /ka! and a determinantal combination of the ka
hybridization functions, where the correct signs to build the
determinant are provided by the contour time ordered local
trace. The ka-th order term in the expansion therefore reads

�a

�− 1�ka

�ka!�2 

C

dt1
adt̃1

a . . . 

C

dtka

a dt̃ka
Det��a�


 �TC�
a

�c†�t1
a�c�t̃1

a� . . . c†�tka

a �c�t̃ka

a ��� . �33�

Now, the integrand is fully symmetric under permutations
and we can take advantage of this fact to reduce the size of

the integration domain, namely, we choose among the ka!
possible contour time-orderings for the creation and annihi-
lation times with flavor a the following ones:

t1
a�

C

t2
a�

C

. . . �
C

tka

a , t̃1
a�

C

t̃2
a�

C

. . . �
C

t̃ka

a . �34�

As anticipated, the final result we get for the dynamical por-
tion function Z�t� coincides with the one quoted in Eq. �28�.

These considerations are relevant for studying quantum
quenches and real-time dynamics of correlated lattice models
within Dynamical Mean Field Theory. In this case, as one
can show explicitly, the full nonequilibrium many body
problem is mapped, in the limit of infinite lattice coordina-
tion, onto a quantum impurity model coupled to a nonequi-
librium bath and subject to a self-consistency condition. The
dynamical portion function of this effective nonequilibrium
problem acquires exactly the same form as in Eq. �29�, with
an unknown contour ordered hybridization function
i�C�t , t��, which generally lacks time translational invari-
ance. This fact makes ineffective most of the conventional
impurity solvers used in equilibrium DMFT, which rely on a
time independent Hamiltonian formulation of the effective
problem, thus suggesting diagrammatic Monte Carlo method
as a natural candidate to solve nonequilibrium dynamical
mean field equations.

IV. DIAGRAMMATIC MONTE CARLO

Diagrammatic Monte Carlo is a numerical algorithm for
sampling infinite series of multiple integrals, such as those
arising in any perturbative expansion.33 As it is well-known
in many body theory, these expansions often admit a dia-
grammatic representation,34 even in out-of-equilibrium situ-
ations. This is true also for the hybridization expansion of
Sec. III, as we are now going to show, which is obtained by
a proper extension of the graphical representation introduced
by Werner and co-workers22,30 in the context of the
imaginary-time diagMC algorithm.

As it can be immediately read out from Eq. �28�, the
dynamical partition function can be written as a weighted
sum over configurations C made by diagrams on the
Kadanoff-Baym-Keldysh contour

Z�t,�� = �
C

W�C� . �35�

A given configuration contains, for each channel a
=1, . . . ,N, a total of 2ka vertices occurring at times �ti

a , t̃i
a� on

the contour, with i=1, . . . ,ka. Half of these vertices represent
an impurity creation operator ca

†�ti
a� while the other half

stems for an impurity annihilation operator ca�ti
a�, both of

them being evolved in time with the local Hamiltonian Hloc.
All together, we have 2�aka impurity operators, which we
store in such a way to always preserve global time ordering
along the contour. In summary, a typical configuration reads
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C =
a = 1,2, . . . ,N
ka = 0, . . . 

t1
a�

C

t2
a�

C

. . . �
C

tka

a

t̃1
a�

C

t̃2
a�

C

. . . �
C

t̃ka

a .
� �36�

An example of such a configuration is shown in Fig. 2.
The weight W�C� associated to each configuration C can

be read directly from the hybridization expansion, see Eq.
�28�. For later convenience we define it as

W�C� = Det�C�sign�C�Trloc�C� , �37�

where sign�C� includes all the signs�phases� coming from the
evolution as well as from the time ordering, while the trace
over the configuration reads

Trloc�C� = Tr��locX1�t1�X2�t2� . . . X2N�t2N�� , �38�

so that by definition, we get for Z�t�

Z�t� = �
C

W�C� . �39�

The same weights W�C� are also required for evaluating the
average of any local operator O acting on the impurity Hil-
bert space. Indeed, if consider the definition of quantum av-
erages given in Eq. �5�, namely,

�O�t�� = Tr��eqU
†�t�OU�t�� , �40�

and perform the hybridization expansion of the previous sec-
tion, we find that

�O�t�� =
�CO�C�W�C�

�CW�C�
, �41�

where the estimator of local operator has been defined as

O�C� =
Tr��locX1�t1� . . . O . . . X2N�t2N��

Tr��locX1�t1� . . . X2N�t2N��
. �42�

Once the real-time average of a local operator is written
as in Eq. �41�, it would be natural to sample it using a Monte
Carlo method, namely, generating a random walk in the con-
figuration space, which visits configurations C with probabil-
ity P�C�=W�C� /�C�W�C��.

When trying to implement this idea in the context of real-
time quantum dynamics the problem one has to face is that
the weight W�C� is in general a complex number. In the
specific case of interest this is not only due to the explicit
”i-factors” coming from the real-time evolution and entering

sign�C� but also to the fact that the contour ordered bath,
defined in Eq. �25� and entering the determinants, is indeed a
complex function of its time arguments �see Appendix�. The
simplest way to circumvent this problem is to sample the
absolute value of the weight, �W�C��, while including the
phase ��C�, defined as

��C� =
W�C�
�W�C��

, �43�

in the Monte Carlo estimator. While this approach allows for
a straightforward implementation, it becomes problematic
when the average phase goes to zero. In this respect, we note
that more refined but computationally expensive techniques,
based on sampling blocks of configurations at fixed sign, has
been developed in recent years to cope with this dynamical
sign problem.35 Therefore, a possible future direction could
be to merge them with present implementations of diagMC
method to see if a compromise between efficiency and accu-
racy can be found. For the time being, we avoid this route,
sampling directly the absolute value of the weight.

Metropolis Algorithm

The standard technique to generate configurations with a
given probability �in the case of our interest P�C�
��W�C�� /�C��W�C���� is to build up a Markov chain, namely,
a stochastic process, which describes the evolution of the
probability to visit configuration C after n steps.

P�C,n� = Proba�C�n� = C� . �44�

This Markov chain is fully determined once we assign the
conditional probability S�C� �C� to be in C� at step n+1 being
in C at step n. Indeed, this is the quantity entering the master
equation

P�C�,n + 1� = �
C

S�C��C�P�C,n� . �45�

Sufficient conditions for this master equation to reach, after
waiting a proper equilibration time, the desired probability
P�C� is that the matrix S�C� �C� is ergodic and satisfies the
so called detailed balance condition. Ergodicity means that it
has to be possible to reach any configuration C from any
other configuration C� in a finite number of steps, while de-
tailed balance means that for any couple of configuration C
and C� the following relation has to hold:

S�C��C�P�C� = S�C�C��P�C�� , �46�

where P is the probability distribution we want to sample
through the Markov chain.

A simple algorithm to generate configurations so to satisfy
detailed balance was introduced by Metropolis.36 The idea is
to start from a given initial configuration C and to propose to
visit a new configuration C� with a certain transition prob-
ability T�C� �C�. Then this new configuration is accepted or
rejected according to the probability A�C� �C� so that the full
conditional probability to move toward C� starting from C is
given by

0

−i

t

β

FIG. 2. �Color online� An example of configuration C sampled
by diagMC algorithm.
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S�C��C� = T�C��C�A�C��C� . �47�

The Metropolis choice for the acceptance probability
A�C� �C� reads

A�C��C� = min�1,
P�C��T�C�C��
P�C�T�C��C� � . �48�

It is easy to show that such a choice satisfies the detailed
balance condition in Eq. �46�. While this algorithm is com-
pletely standard and model independent, two main issues
have to be taken into account with reference to the problem
at hand, since they can strongly affect the performance or
even the reliability of the Monte Carlo simulations.

The first one concerns the choice of the transition prob-
ability T�C� �C�. In the case of interest, we implement two
main classes of local moves, in which the number of kinks in
a given channel a is changed by unity, �ka= �1. These
moves amount to add or remove one creation and one anni-
hilation fermionic operator in the a channel at randomly cho-
sen times along the contour and are required for the ergod-
icity of the matrix S. Indeed it is evident that, using these
two basic updates any configuration can be reached, in prin-
ciple, after a finite number of steps.37 Therefore, using these
two classes of moves and the Metropolis acceptance Eq. �48�
we can guarantee that the sampling process visits configura-
tions according to probability P�C�. A second issue, which
is different from the ergodicity one, concerns the efficiency
and the speed-up of the Monte Carlo sampling �for example
the number of steps which one has to wait before reaching
the desired probability distribution�. For this purpose, addi-
tional kind of updates may enhance the sampling procedure.
In the present algorithm, following standard practice in di-
agMC, we also implement moves that connect configurations
at fixed number of kinks ��ka=0� such as for example shift-
ing an annihilation operator. We also note that other kind of
moves, in which more than two operators are added/
removed/shifted, may become relevant when dealing with
off-diagonal baths. Similarly, global moves, in which a
whole set of operators is changed, has proven to be funda-
mental in the case of multiorbital models.38 We note that, as
it happens for the imaginary time algorithm,22 a major issue
in the implementation of these Monte Carlo moves is to
properly take into account the structure of the impurity hil-
bert space to avoid, when it is possible, moves toward con-
figurations which have zero weight. In the case of impurity
models without exchange or hopping terms, these zero-
weight configurations can be immediately read out since, for
each channel a, creation and annihilation operators have to
occur in alternated order along the contour, to have a finite
local trace in Eq. �37�. This leads to a very convenient seg-
ment picture.22

A further point that requires some comment concerns the
evaluation of the acceptance ratio in Eq. �48�. As can be seen
from the expression of the weight W�C� in Eq. �37�, this
amounts to evaluate the ratio of two determinates as well as
the ratio between two local traces. While for the former fast
update routines are available, which makes this operation
rather efficient, dealing with the ratio among local traces is
the most time-consuming part of the algorithm, at least in the

general case of a multiorbital quantum impurity model. In
such a case, indeed, one has to evaluate from scratch the
whole chain of fermionic operators. Several tricks have been
proposed to implement this evaluation31 in an efficient way
and we have used most of them in our algorithm. In particu-
lar, we write the fermionic operators entering in Eq. �38� in
the basis of local eigenstates and store the whole chain of
matrix products from left to right �and vice versa�, so that the
evaluation of trial moves is reduced to few matrix multipli-
cations.

In the next section, we describe the first application of the
diagMC algorithm on the Kadanoff-Baym-Keldysh contour
to the single impurity Anderson model. In particular, we will
focus on the impurity real-time dynamics after a local quan-
tum quench.

V. REAL-TIME DYNAMICS IN THE ANDERSON
IMPURITY MODEL AFTER A LOCAL

QUANTUM QUENCH

Quantum quenches in strongly correlated systems have
recently attracted lot of scientific interest, especially inspired
by exciting experiments on cold atomic gases5 where sudden
changes of Hamiltonian parameters has been realized and the
nonequilibrium dynamics monitored in real-time. In the con-
text of impurity models, instead, the study of quantum
quenches has a long history which goes back to the funda-
mental work by Nozières and De Dominicis on the x-ray
edge singularity,39 passing through the famous Anderson and
Yuval approach to the Kondo model.40 More recently, this
problem stimulated new interest,13,41,42 due to the experimen-
tal progresses in nanotechnology, which made it possible to
contact microscopic quantum objects with metallic elec-
trodes, thus realizing quantum impurity models in a fully
tunable setup.43 Two kinds of quenches can be considered in
this context, depending on the amount of energy that is in-
jected into the system, also referred as the work done during
the quench. Global quantum quenches are particularly rel-
evant for transport through correlated nanostructures, where
a net current flow is forced by suddenly switching on, e.g., a
dc bias voltage. Since the switched perturbation is extensive,
the system is driven into a nonequilibrium steady state at
long times.44 Conversely, local quantum quenches amount to
suddenly change the impurity Hamiltonian. These kinds of
quenches could be realized in an optical absorption experi-
ment, as suggested in Ref. 45 and the resulting nonequilib-
rium dynamics can be tracked in real-time using pump-probe
techniques or, in real-frequencies, measuring the absorption
lineshape. Furthermore, local quenches are interesting as
they are the simplest examples of nonequilibrium processes
whose statistics may show nontrivial fluctuations.46

To test the algorithm, in this section, we study the non-
equilibrium dynamics in the Anderson impurity model47 after
a local quantum quench. This model, which serves as a fun-
damental paradigm for strong correlation physics, describes
a single interacting fermionic orbital coupled to a an equilib-
rium bath of free conduction electrons. The local Hamil-
tonian before and after the quench reads
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Hloc
� �c�

† ,c�� =
U�

2
�n − 1�2 + �d�n n = �

�

c�
†c�. �49�

The conduction electrons are assumed to be noninteracting,
hence the coupling to the impurity occurs via an energy-
dependent hybridization function ����, which is defined in
terms of the conduction density of states �DoS� ���� as

���� = ��
k

�Vk�2��� − �k� = �V2���� , �50�

where we have assumed for simplicity Vk independent of
momentum. As a model for the DoS we start considering a
flat band of width 2W

���� = �0��W − ���� , �51�

which encodes the main physics of a metallic conduction
bath, namely, a finite weight at the Fermi level ��0=1 /2W at
�=0� and a finite bandwidth. In this case the basic energy
scale describing the coupling between the impurity and the
bath is the hybridization strength �=�V2�0. In all calcula-
tions, we take � as our unit of energy and choose W=10�.

This section is structured as follows. We first discuss
some aspect of the algorithm �statistics of kinks and average
sign� in the specific case of the Anderson Impurity Model
and then present the results for its charge and spin real-time
dynamics after a local quantum quench.

A. Performance analysis of the Kadanoff-Baym-Keldysh
diagMC algorithm

In order to analyze the performances of the diagMC algo-
rithm on the Kadanoff-Baym-Keldysh contour we will con-
sider two main quantities, namely, the probability distribu-
tion of perturbative orders in the diagrammatic expansion
and the average sign of the Monte Carlo weight, both being
sensitive measures to establish the efficiency of the method.
In the specific case of the single impurity Anderson Model,
with reference to the notation introduced in Sec. III, we have
only N=2 channels, corresponding to spin �= ↑ ,↓.

1. Statistics of Kinks

As we have shown in Sec. IV, diagMC amounts to sto-
chastically sample the expansion for Z�t� in powers of the
hybridization, by performing a random walk in the space of
diagrams. It is therefore quite natural to monitor during the
simulation the statistics of different perturbative orders
�number of kinks�, namely, the probability to visit a Monte

Carlo configuration C featuring k creation vertices �and k̃
annihilation vertices� in the spin sector �. We define this
quantity as

P��k� =
�C�W�C����k�C�� − k�

�C�W�C��
, �52�

where the Monte Carlo weight W�C� has been defined in Eq.
�37�. The behavior of this probability distribution is plotted,
as an example, in the left panel of Fig. 3 for increasing val-
ues of the measuring time t� starting from t�=0, which cor-

responds to the equilibrium initial preparation. We note that
all histograms are strongly peaked around an average value

k̄, larger perturbative orders k� k̄ appearing with an expo-
nentially small probability. Notice that whenever this would
not be the case, namely, if arbitrarily large perturbative or-

ders �k� k̄� would give a finite contribution to the result, a
diagMC algorithm to work would need an explicit cutoff
kmax on the perturbative order and the result would then re-
quire an extrapolation48 to kmax→. However, for quantum
impurity models, at least for the weak and strong coupling
algorithms,21,22,31 this is not the case. Figure 3 confirms that
all orders are included and contribute, with their own weight,
to the final result. This fact ensures that the outcome of our
diagMC calculation is an unbiased result, which does not
correspond to any truncation at finite-order of the perturba-
tive expansion but rather represents a numerical resumma-
tion of a formal expansion. From Fig. 3 we note that upon
increasing t� the whole histogram shifts toward larger values
of k since kinks start to be added on the two Keldysh
branches. It is therefore interesting to resolve this increased
perturbative order in the two sectors of the simulation,
namely, the Matsubara and the Keldysh one. To this extent,
we plot in the right panel of the same figure the probability
distribution of having ktot kinks with spin � on the Matsubara
axis, PM��k� �top right panel�, or ktot kinks with spin � on the
Keldysh branches, PK��k� �bottom right panel�, where ktot
means that we are considering both creation and annihilation
vertex. At t�=0, the initial state, the Keldysh branches are
empty while the Matsubara sector is filled with an even num-
ber of kinks �to ensure particle conservation�. Upon increas-
ing t��0, the system starts evolving in real-time and we
note a transfer of weight in the Keldysh sector toward finite
values of k. At the same time the Matsubara probability dis-
tribution does not change its center of gravity and rapidly
converges to a final distribution, now allowing also for an
odd number of kinks �the total particle conservation is en-
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FIG. 3. �Color online� Probability distribution of different per-
turbative orders k sampled during the simulation. Data refers to a
local quench in the Anderson Impurity Model, starting from U−

=0 to U+=10� at particle-hole symmetry, for T=0.1� and W
=10�. Left panel shows the statistics of kinks along the whole
contour, while the top and bottom right panels display the histo-
grams for the Matsubara and Keldysh sector, respectively.
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sured by kinks in the Keldysh sector�. The scaling of the

average number of kinks k̄ with measuring time t�, tempera-
ture and other physical parameters is also relevant and in-
structive. In the equilibrium case �corresponding here to t�

=0�, k̄ has been shown in Ref. 31 to be proportional to in-
verse temperature � with a prefactor given by the average
hybridization energy per spin,

k̄� = − ��Hhyb
� � . �53�

Since �Hhyb� decreases upon increasing the correlation
strength U the diagMC method in imaginary time works ex-
tremely well in the regime U�� being able to reach very
low temperatures compared to the energy scales in the prob-
lem. Unfortunately, the very convenient scaling of Eq. �53�
does not hold anymore for the real-time dynamics, as was
also noted in previous works.25 In Fig. 4 �left panel�, we plot

k̄ as a function of time t� for different initial preparations
U−=0,5 ,10. We note an almost perfect linear scaling with
time, as expected, while the effect of starting from a corre-
lated initial state U−�0 generally helps since it decreases the

value of k̄ at t=0. Nonetheless, a finite Coulomb interaction
in the final state, U+�0, has no effect on the average number
of kinks sampled, as shown by the dashed line in left panel
which exactly lies on top of the U+=0 results.

Summarizing, we conclude that the scaling of the average
number of diagrams for the real-time algorithm generally
reads

k̄� = �t + k̄�
eq, �54�

� being a constant independent on U. It is therefore natural
to ask what is the energy scale controlling this prefactor. As
we show in the right panel of Fig. 4, � strongly increases
with the conduction bandwidth W �and presumably also on
the hybridization strength�. As a consequence of Eq. �54�,
accessing large time scales in the regime W�� becomes

increasingly difficult with this approach. This is due to the
fact that both the computational cost of the algorithm and, in
particular, the average sign of the MC weights strongly de-

pend on the average number of kinks k̄, exponentially the
former and power-law the latter.

2. Average sign

Another important quantity to monitor during the simula-
tion is the average sign of the Monte Carlo configurations,
which is tightly related to the accuracy we can get on physi-
cal quantities at fixed CPU time. Indeed, a vanishing average
sign turns into very large error bars on Monte Carlo averages
that make the simulation unstable. In the specific case of the
hybridization expansion diagMC, it is known that, for what
concerns the equilibrium �imaginary-time� algorithm, the
single impurity Anderson Model has always positive signs
and that even multiorbital impurity models with rotationally
invariant interaction can be efficiently simulated up to mod-
erate low temperatures. This situation drastically change
when dealing with real-time dynamics since even the simple
noninteracting resonant level model faces a severe sign prob-
lem at large enough times scales. This seems to be due to the
intrinsic nature of unitary quantum evolution and clearly ap-
pears from the definition we gave of the dynamical partition
function Z�t� in Sec. III. Indeed exact cancellations are built
in the whole formalism to ensure unitarity.

In the real-time diagMC one should in general talk about
average phase, since as we mentioned the Monte Carlo
weights are complex numbers. Nevertheless, this quantity,
which is defined as

�̄�t� =
�C�W�C����C�

�C�W�C��
. �55�

turns to be directly related to the probability of visiting con-
figurations in the Matsubara sector, namely, to the probabil-
ity of having no kinks on the real-time branches. As a con-
sequence of this result, which comes directly from unitarity,
we conclude the average phase is indeed a purely real num-
ber even for t�0 and therefore, without further misunder-
standing, we refer to it as the average Monte Carlo sign. As
we show in Fig. 5, �̄�t� depends exponentially on the mea-
suring time t�, namely, on the length of the Keldysh contour.
In the left panel, we plot the average sign for different values
of the Coulomb repulsion U− in the initial density matrix. We
see that �̄�t� uniformly increases with U−, namely, starting
from a correlated initial state may result into a larger average
sign even if the effect is rather small. In the left panel we
study how the sign depends on the bandwidth W of conduc-
tion electrons. We see that moving from W=� to W=15�
there is a sizeable increasing of the average sign, which
means that larger time scales can be reached with present
algorithm in the regime W��. While this is not of direct
relevance for quantum impurities, it can be very interesting
for nonequilibrium DMFT, where the conduction bandwidth
is of the same order as the coupling between the impurity
and the bath itself.
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FIG. 4. �Color online� Scaling of the average number of kinks
with maximum time t�. Left panel shows data at fixed U+=0, tuning
the strength of the Coulomb repulsion U−=0,5 ,10. See the perfect

linear scaling with the same slope �=dk̄ /dt. Right panel displays
data at fixed U−=10, U+=0 tuning the strength of the conduction
bandwidth W. We see how the slope � increases with bandwidth
making increasingly difficult to access large time scales in the re-
gime W��.
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B. Charge and spin dynamics in the Anderson model
after a local quantum quench

We start by considering the noninteracting case, the so
called resonant level model with U−=U+=0, which allows
for an exact solution and can be therefore used to benchmark
the algorithm. We consider for this simple resonant level
model a quench of the energy level �d that we tune from the
on-resonance value �−=0 to the off-resonance one �+�0.
We note that this kind of quench can be realized in optical
absorption experiments with quantum dots, as recently pro-
posed in Ref. 45. In Fig. 6, we plot the real-time dynamics of
the impurity density n�t� for two different quenches, respec-
tively, above and below the on-resonance value �d=0, and
compare the result of diagMC �data points� with the exact
dynamics, which can be obtained using standard methods.49

The excellent agreement with exact results confirms the re-
liability of our numerical approach.

We then move to the interacting case, namely, consider a
local quantum quench in the Anderson model with local
Hamiltonian �49�. In Fig. 7 we show the dynamics of the
double occupation D�t�= �n↑�t�n↓�t�� after a sudden quench
of the local interaction strength U. Two different cases are
considered. In the upper panel of Fig. 7, we start from the
same initial preparation, U−=10�, and quench to different
final values of the interaction U+ /�=0,2.5,5 �from top to
bottom�. In the lower panel of the same figure, we start from
different initial preparations U− /�=2,4 ,6 �from top to bot-
tom� and quench to the same final state U+=0.

The dynamics at short times, soon after the quench, is
controlled by the initial density matrix as expected on gen-
eral grounds. After a short time scale, tshort�0.1 /�, the sys-
tem starts feeling the quench and in fact the curves in the
upper/lower panel start to deviate from/approach to each
other. The time scale controlling the approach to the steady
state is set mainly by 1 /�—without coupling to the bath no
dynamics for the charge would arise at all. However, the final
value of the interaction also affects the dynamics, as one can
see from data in the top panel of Fig. 7. We also compare
these findings with the noninteracting case, where the quench
is performed on the energy level, which is suddenly placed
out of resonance �see lower panel black curve�. In this situ-
ation, the dynamics appears much slower than the previous
cases, at least a factor of two. In Fig. 8, the problem of
quenching the impurity energy level is considered for differ-
ent values of the Coulomb repulsion U, starting from a level,
which is initially half-filled. As compared to the noninteract-
ing U=0 case, the effect of interaction is to make the whole
relaxation dynamics much faster and the steady state value
closer to the starting one, resulting in some sense into a less
pronounced deviation from equilibrium. This can be rational-
ized by considering how the density depends, in equilibrium,
on the energy level �see inset�: upon increasing the interac-
tion the curve n��d� becomes flat around �d=0, a signature of
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FIG. 6. �Color online� Quench dynamics in a Resonant Level
Model after a sudden change of the energy level from �d−=0 to
�d+�0. Dashed lines is the exact solution for n�t� as obtained by a
standard methods. Points are diagMC results obtained at T=0.1�.
We also add the dynamics for the trivial case �d+=�d−=0 to show
that unitarity is actually preserved by diagMC.
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FIG. 7. �Color online� Nonequilibrium dynamics of double oc-
cupancy D�t� in the Anderson impurity model after a local quantum
quench of the interaction strength at T=0.1� and particle-hole sym-
metry. In the upper panel we start from an initial state with U−

=10� and a very low double occupation and quench to different
values of U+ /�=0,2.5,5 from top to bottom. In the lower panel,
the opposite protocol is considered, namely, we start from different
values of U− /�=2,4 ,6 from top to bottom and quench to the same
final U+=0. In both cases we see that after a rather short transient
the system relaxes to a new equilibrium state.
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Coulomb blockade phenomenon. As a consequence, any per-
turbation which moves the impurity occupation out of inte-
ger filling is quickly suppressed on a short-time scale. The
overall picture confirms what also found in a similar inves-
tigation with the time-dependent NRG in Ref. 13, namely,
that charge dynamics is sensitive to high-energy scales, thus
resulting into a generally fast relaxation. As opposite to the
charge sector, the dynamics of spin degree of freedom is
sensitive to the low-energy physics of the model. To probe
this dynamics in real time, we imagine to add a magnetic
field h− to the local Hamiltonian, which partially polarizes
the impurity, and suddenly switch it off for t�0. The local
Hamiltonian Eq. �49� now reads

Hloc
� �h�� = Hloc

� �h� = 0� −
h�

2 �
�

�n�. �56�

In Fig. 9, we plot the spin dynamics �Sz�t�� starting from
h−=5� and switching it off, h+=0, for different values of the
interaction U. Since the final state in the absence of Zeeman
splitting is fully symmetric, we expect to recover, for large
enough times, a relaxation to an unpolarized state with �Sz�
=0. We see that this relaxation is very slow and controlled by
a time scale which increases with U �see top panel�, as op-
posite to what found in previous cases, when the dynamics of
charge degrees of freedom was probed by quenching the in-
teraction or the level position. Indeed, the spin dynamics in
the strong coupling regime is controlled by the lowest energy
scale in the problem, namely, the Kondo temperature, as ex-
plicitly shown in Ref. 13. Accessing such a long time scale
seems so far unfeasible within the present approach, since
diagMC simulations become increasingly inaccurate at large
times due to sign problem, as we will discuss in the next
section. As shown in the bottom panel of Fig. 9, the effect of
a large magnetic field in the final state is to destroy Kondo
effect, thus resulting again into a fast relaxation toward a

new steady state. An interesting direction for future investi-
gation is to study the spin dynamics in the Kondo regime
under the effect of more general nonequilibrium processes,
other than a quantum quenches. In this respect the present
approach can deal with explicitly time dependent phenom-
ena, such as for example an oscillating magnetic field, with-
out any truncation of the dynamics.

C. Nonequilibrium dynamics for a quantum impurity in a
gapped or pseudogapped fermionic reservoir

In all cases considered above, we observe at large times a
convergence to a new equilibrium state which is the thermal
one described by the final Hamiltonian H+, namely,

�O�t → �� =
Tr�e−�H+O�
Tr�e−�H+�

. �57�

This is explicitly shown by the dashed line in Fig. 7, which
represent the result of an equilibrium calculation done with
imaginary time diagMC with the final Hamiltonian H+. We
also note that no effective heating arises, namely, the tem-
perature entering in Eq. �57� is the same as in the initial
condition �2�. This is due to the fact that within diagMC the
fermionic reservoir is treated as an infinite system. The onset
of thermalization in a quantum impurity model is not
surprising,50 and it is related to the fact that the conduction
electrons play the role of a thermal bath,44 able to absorb the
energy pumped locally after quench, which is dissolved in
the interior of the bulk. It is worth noting that this feature is
not generic of any bath—meant as a macroscopic �infinite�
system—but rather depends on its spectral properties. In the
present case, as we are going to see, thermalization is related
to the gapless nature of the metallic state, whose energy
spectrum goes down to arbitrarily small energies. To further
investigate this issue, we consider now the out-of-
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FIG. 8. �Color online� Nonequilibrium dynamics of the impurity
density after a quench of the energy level from �d−=0 to �d+

=2.5�. We compare the dynamics for different values of the Cou-
lomb repulsion U=0,2.5,5 ,7.5,10 from bottom to top, revealing a
much faster thermalization in the correlated case due to Coulomb
blockade. Inset: thermal value of the impurity density as a function
of the level position for U=0,2.5,5 ,7.5,10 from top to bottom. For
U��, the curve is almost flat around �d=0 hence departure from
equilibrium is suppressed after a short transient.
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FIG. 9. �Color online� Spin dynamics in the Anderson model
after a sudden quench of a local magnetic field. We start from a
partially polarized impurity, with h−=5.0, T=0.1� and different val-
ues of local interaction U �top panel�. At time t�0, the magnetic
field is switched off and the magnetization is allowed to relax to-
ward an unpolarized steady state. We see that upon increasing the
interaction U, the dynamics slows down. Due to fine-time reso-
lution we cannot follow the decay of the spin toward zero magne-
tization. However, a large magnetic field in the final state gives rise
to a rather fast relaxation.
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equilibrium dynamics of an Anderson impurity coupled to
gapped and pseudogapped fermionic bath. Even though QI
models traditionally deal with genuine metallic hosts, the
problem of gapped �or pseudogapped� fermionic reservoirs
has a vast literature,51–54 that received a large boost in recent
years. Eminent examples of such a physical situation are
provided by adatoms in graphene sheet or by nanostructures
built up with superconducting materials.

The equilibrium phase diagram of an Anderson impurity
embedded in a nonmetallic host it is by now rather well
established.12,52,55 As opposite, the nonequilibrium real-time
dynamics in this class of quantum impurity models is much
less explored. A detailed study of this issue goes well beyond
the scope of this paper and it will be left for future investi-
gations. Here, we limit to elucidate the role played by the
presence/absence of low energy bath spectral weight on the
single impurity dynamics after a local quantum quench. It is
worth to notice that this issue can be also relevant to study,
within nonequilibrium DMFT, the relaxation dynamics of in-
teracting electrons after quantum quenches. Indeed, DMFT
amounts to solve a quantum impurity self-consistently, using
the contour ordered impurity Green’s function as a seed to
generate the new fermionic out-of-equilibrium bath.

1. Gapped fermionic reservoir

We start our discussion considering the case of a true
gapped fermionic bath. In other words, we consider as a
model for the conduction electrons DoS the following:

�g��� = � 0 0 	 ��� 	 Eg

�0 Eg 	 ��� 	 Eg + W
� , �58�

where 2Eg is the band gap at the Fermi level. This density of
states results into an energy dependent hybridization function
���� that we define as in Eq. �50�, namely, ����=�V2����. A
plot of this function for different values of Eg is given in Fig.
10. We note that in the following we will adopt as unit of
energy the hybridization width �=�V2 /2W, the same as in
the metallic case.

The equilibrium properties of an Anderson impurity
coupled to a gapped reservoir have been studied with NRG
in Ref. 55 and more recently with a perturbative approach in
Ref. 56. The model at particle-hole �PH� symmetry flows at
low temperature to the local moment fixed point where the
impurity is asymptotically decoupled from the bath. Out of
PH, the model displays a transition between local moment
fixed point and strong coupling fixed point depending on
whether the gap Eg is larger or smaller than the Kondo tem-
perature. Here, we consider for simplicity the PH symmetric
point, which correspond to setting �d−=�d+=0 in the local
Hamiltonian Eq. �49� and discuss the real-time dynamics for
the double occupancy D�t�= �n↑�t�n↓�t�� on the impurity site
after a sudden change of the local Coulomb interaction.

In Fig. 10, we show the double occupancy dynamics after
a quench from U−=10� to U+=0 for different values of Eg at
T=0.1�. Due to PH symmetry, the thermal value of D com-
puted on the final Hamiltonian H+ has to be equal to
Dtherm=1 /4 for U+=0. Indeed, we see that in the metallic
case �Eg=0� D�t� approaches rather quickly the expected

thermal plateau. At the same time, opening a finite gap Eg
�0 in the bath reflects into a much slower dynamics, which
prevents us from a firm conclusion on the asymptotic behav-
ior of D�t�. We note, however, that for large values of Eg the
dynamics seems actually to reach a stationary state, which
looks quite different from the expected one. Such a behavior
could be interpreted in terms of the equilibrium properties of
the gapped Anderson impurity model, which, as we men-
tioned, at PH symmetry flows to the local moment regime
with the impurity effectively decoupled from the bath. Given
such an initial condition and taking into account the large
value of the gap, which strongly affects the bath properties,
one can rationalize the slowing-down of the impurity dynam-
ics. Indeed, in the limit of very large gaps Eg→, a free
impurity would have no available mechanism to exchange
energy and relax to the steady state described by H+. While
this argument could be in principle satisfying to explain re-
sults plotted in Fig. 10, at least in the large gap regime, it
does not take into account completely the nature of a quan-
tum quench process. To further investigate this point we now
reverse the perspective, namely, we fix the gap Eg in the
spectrum and change the strength of the quench, namely, we
change the final value of the interaction U+ while keeping
fixed U−=0 as well as the level position so to ensure PH
symmetry. This allows to study how the nonequilibrium dy-
namics depends on the amount of work done during the
quantum quench. As was recently suggested in46 the statistics
of the work is a key quantity to characterize a nonequilib-

rium process such as a quantum quench. Its average value W̄
gives a measure of the energy pumped into the system and
turns to be given,46 in the case of an instantaneous quench,
by
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FIG. 10. �Color online� Nonequilibrium dynamics for an Ander-
son Impurity coupled to a gapped fermionic reservoir. We plot the
real-time dynamics for double occupancy at the impurity site after a
quench of the interaction from U−=10� to U+=0, at particle-hole
symmetry �d+=�d−=0 and for T=0.1�. Different values of the gap
in the bath Eg=0,1 ,2.5,5.0 are considered, resulting into very dif-
ferent dynamics. Contrarily to the gapless case �Eg=0, black points�
which quickly approaches the thermal plateau fixed by PH symme-
try and indicated by an arrow, Dtherm=1 /4, we see that due to the
finite gap in the spectrum the real-time dynamics slows down thus
preventing us to conclude on the long time behavior of D�t�. How-
ever, for very large values of Eg �see Eg=5�� the dynamics seems
actually to reach a steady state where the double occupation is
different from Dtherm.
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W̄ = �H− − H+�−, �59�

where the average � · �− is taken over the initial equilibrium
density matrix �eq�e−�H−. In the case of a local quantum
quench such as the one we are considering, the average work

W̄ is given by

W̄ = �U− − U+��D�−. �60�

We see therefore that the work W̄ depends not only on the
strength of the quench, namely, the change in the interaction,
but also on the initial condition. As we are going to see, this
quantity greatly affects the resulting nonequilibrium dynam-
ics.

In Fig. 11, �top panel� we plot the dynamics of double
occupancy D�t� at PH symmetry after a quench of the local
interaction. We set T=0.1� and choose a fixed value of the
gap Eg=�. We compare two kind of processes: one starting
from U−=0 to U+�0 and the reverse one, which starts from
U−�0 and quenches to U+=0. Quite interestingly we see

that, provided the average work W̄ is above the threshold of
the �semi�gap Eg, as for the process U−=0→U+=10� �black

curve in top panel� for which �W̄�=2.5�, a rather fast ther-
malization can occur also in the gapped model. Notice in-
deed that the expected thermal value for D, which is set by
the dashed line in Fig. 11 �top panel� and which corresponds
to the value of double occupation computed at equilibrium
for U+=10�, is approached on a rather short time scale. We
compare these findings with the inverse quench process,

starting from U−=10� and quenching to U+=0, which in
force of Eq. �60� is characterized by a rather small average

work W̄	Eg. As we see in Fig. 11 the dynamics looks much
slower in this case and we cannot conclude, on the basis of
our data, whether the thermal plateau at Dtherm=1 /4 is actu-
ally approached or not at longer times. A similar comparative
study is performed for quenches from U−=0 to U+=2.5� and
vice versa and the results are plotted in bottom panel of Fig.
11.

2. Pseudogapped fermionic reservoir

We now consider the dynamics of an Anderson impurity
coupled to a pseudogap reservoir. We consider as DoS a pure
power-law function, namely,

�pg��� = �����r 0 	 ��� 	 W

0 ��� � W
� , �61�

where �= �r+1� / �2Wr+1� ensures the proper normalization.
This gives rise to a power-law hybridization function ����
that we define in complete analogy with the previous cases
see Eq. �50�. Again, we choose as unit of energy the hybrid-
ization width �=�V2 /2W.

The equilibrium phase diagram of the pseudogap Ander-
son Impurity model is extremely rich, featuring at particle-
hole symmetry and for 0	r	1 /2, a quantum phase transi-
tion at a critical value of the hybridization �c between a
strong coupling regime �for ���c� where Kondo screening
occurs and a local moment one �for �	�c� where the impu-
rity becomes asymptotically free at low temperature. As op-
posite, at PH symmetry and for r�1 /2 the only stable fixed
point is the local moment one and no Kondo effect can be
stabilized for an Anderson Impurity in a gapless reservoir.52

In the following we will focus for simplicity on this latter
case �r�1 /2 at PH symmetry� so to avoid any complication
related to the dynamics across criticality. We note that the
topic of nonequilibrium dynamics across quantum phase
transitions is indeed an extremely intriguing problem,57 that
may deserves further investigations in the future. However, it
goes well beyond the scope of the present paper.

As we did for the gapped case, we consider as a starting
point a quantum quench of the local Coulomb interaction
between U−=10� and U+=0, at T=0.1� and for �d+=�d−
=0. In Fig. 12, we plot the dynamics of double occupancy as
a function of time, while tuning the exponent r from the
metallic case r=0 to the almost gapped one r=4. As we can
see, the results we found look very similar to what already
discussed in the case of a gapped reservoir. While for r=0,
namely, for a finite hybridization at the Fermi level, the dy-
namics is pretty fast in approaching the thermal plateau �we
are at PH symmetry and U+=0, therefore again Dtherm=1 /4�,
for r�0 the dynamics slows down and for r=4 seems actu-
ally to get stuck into a nonthermal steady state. However,
from these data it is difficult to conclude whether this is
really the case or rather that thermalization emerges on a
very long time scale.

We conclude this section by discussing how the dynamics
in the pseudogapped case changes as a function of the work
done during the quantum quench. To this extent we plot in
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FIG. 11. �Color online� Nonequilibrium dynamics for an Ander-
son Impurity coupled to a gapped fermionic reservoir. We set the
gap in the spectrum equal to Eg=1.0 and plot the real-time dynam-
ics for the double occupancy after a quench of the interaction, at
T=0.1� and PH symmetry. Two kind of processes are considered,
namely, a quench from U−=0 to U+�0 and the reverse process
from U−�0 to U+=0, which differ among each other for the aver-
age work done during the quench, see Eq. �60� in the main text. Top
panel shows data for U−=10�, U+=0 and vice versa, while bottom
panel data for U−=2.5�, U+=0 and vice versa. We see that, pro-
vided the average work done is sufficiently larger than the gap 2Eg,
a fast thermalization can occur also in a gapped model �see top
panel, black points�. As opposite, when the amount of energy
pumped into the system is too small the dynamics slows down and
we cannot conclude with present data whether thermalization takes
place or not.
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Fig. 13 the double occupancy as a function of time, D�t�, for
T=0.1� and at PH symmetry. As we have previously done,
we fix the initial value of the interaction to U−=0 while
tuning the final value U+ �see top of panel� so to change the

average work W̄. At the same time, we study the dynamics
for the reverse process where we fix the final value of the
repulsion to U+=0, while changing the initial condition U−.
As we have already found in the gapped case, the dynamics

turns out to be very sensitive to the average work done,
namely, to the amount of energy pushed into the system. In
particular we can see from Fig. 13 that quenches with suffi-

ciently large work W̄ can result into a rather fast dynamics
and thermalization at long times. This seems to be the case,
for example, of quenches from U−=0 to U+=10� �black
points, top panel� where the thermal value of double occu-
pation with U+=10� is set by the arrow at the bottom of the
panel. In other cases, where the work done is not that large,
the dynamics turns to be slow and we cannot conclude about
the long time behavior.

3. Discussion

To summarize, in this section we have discussed the non-
equilibrium quench dynamics of the Anderson impurity
model in a gapped or pseudogapped fermionic reservoir after
a quantum quench of the local Coulomb interaction. For the
sake of simplicity we have considered only the particle-hole
symmetric case and we have chosen the parameters in such a
way to be always in the local moment regime in equilibrium
for both gapped and pseudogapped cases, so to avoid further
complications due to local quantum criticality, which may
result into very low-energy/long-time scales controlling the
dynamics.

An important issue we have tried to discuss concerns the
onset of thermalization at long times. While this is expected
to occur for quantum quenches in a conventional metallic
reservoir, one may wonder whether or not the lack of avail-
able states close to the Fermi energy could result into a lack
of thermalization at long times. We have shown that the real-
time dynamics is strongly affected, even on short-to-
intermediate time scales, by the modified spectral function of
the bath. In particular, the opening of a gap or pseudogap at
the Fermi level results into a slower transient dynamics.
While it is tempting to explain this fact by invoking the
equilibrium properties of the model and the mentioned flow
to the local moment fixed point, one have to take into ac-
count also the intrinsic out-of-equilibrium nature of the
quantum quench process. In this perspective, we have iden-

tified the work W̄ done during the quench as a relevant physi-
cal quantity to describe the nonequilibrium dynamics after
the quench. In particular, for the gapped and pseudogapped
models, we have shown that a rather fast thermalization can

occur provided the work done W̄ is sufficiently large �for
example, with respect to the �semi�gap Eg�. As opposite for
small quantum quenches characterized by a small amount of

work done W̄�Eg, the dynamics turns to be much slower
and we cannot conclude, with present data, whether thermal-
ization occurs or not on a longer time scale, thus leaving the
question open to further investigations.

VI. CONCLUSIONS

In this work, we have extended the recently developed
real-time diagMC method, in its hybridization expansion for-
mulation, to full Kadanoff-Baym-Keldysh contour. The re-
sulting algorithm represents a completely general and nu-
merically exact approach to real-time dynamics in quantum
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FIG. 12. �Color online� Nonequilibrium dynamics for an Ander-
son Impurity coupled to a pseudogapped fermionic reservoir. We
consider the model at PH symmetry and T=0.1�. We fix the quench
parameters, namely, the initial and final value of the interaction,
equal, respectively, to U−=10 and U+=0, and tune the pseudogap
exponent from r=0 �gapless metallic state� to r=4. The depletion of
low energy states in the DoS reflects into a much slower dynamics,
which eventually, for large enough r, seems to prevent the system
from reaching the value of Dtherm=1 /4, which is fixed by PH sym-
metry and by the choice of U+=0. However, due to finite time
resolution we cannot conclude with present data whether thermali-
zation occurs or not on a longer time scale.
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FIG. 13. �Color online� Nonequilibrium dynamics for an Ander-
son Impurity coupled to a pseudogapped fermionic reservoir. We
consider the PH symmetric point, at T=0.1� and for r=1. We study

how the dynamics changes while tuning the average work W̄ done
during the quench �see text�. We fix the initial interaction U−=0 and
perform a quench to U+=10� �top panel�. We compare the results
with the reverse process, from U−�0 to U+=0. Despite the power-
law DoS, the dynamics in the case of a large quantum quench �large
average work� turns to be quite fast. On the contrary, in the low
work regime �bottom panel� the dynamics is much slower and we
cannot see whether thermalization take place or not at longer time
scales.
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impurity models, which interpolates between the standard
equilibrium diagMC �Ref. 22� defined on the Matsubara
imaginary-time axis and its recent nonequilibrium
extensions23–25 that works on the Keldysh contour and re-
quires a special choice of the initial condition for the dynam-
ics. Merging together these two approaches, we are able to
deal with the most generic setup, namely, a strongly corre-
lated quantum impurity model initially in thermal equilib-
rium, which is driven out of equilibrium by some external
time dependent perturbation. As a consequence, several kind
of initial preparations as well as driving protocols can be
considered with our approach that allow studying a wide
class of nonequilibrium problems.

More interestingly, we notice that no constraints are re-
quired on the nature of the fermionic bath, which enters in
our approach as an input, encoded in the contour-ordered
hybridization function i�C�t , t��. This allows us to deal with
the intriguing problem of studying the real-time dynamics of
the quantum impurity coupled to a nonequilibrium bath and
opens the way to applying our method to solve nonequilib-
rium dynamical mean field theory. In this perspective, the
effective action formulation of the algorithm we have pre-
sented at the end of Sec. III represents the most natural one.
The natural extension of this research is to study relaxation
dynamics in correlated macroscopic quantum systems using
nonequilibrium dynamical mean field theory.

As a first application of our algorithm we have studied the
real-time in an Anderson impurity model after a local quan-
tum quench. In the case of a metallic reservoir, we have
discussed time scales controlling charge and spin relaxation.
While the former is a rather fast process mainly controlled by
hybridization �, the latter turns to be a much slower process
associated with the lowest energy scale in the problem,
namely, the Kondo temperature TK. As we have shown in
Sec. V B, the charge time scale can be reached within the
present approach, while the decay of a polarized spin cannot,
due to sign problem which makes calculations at very long
times increasingly difficult.

Finally, we have addressed the nonequilibrium dynamics
of an Anderson Impurity coupled to a gapped or a
pseudogapped reservoir. Even though we restrict our atten-
tion to the PH symmetry and to power-law exponents r
�1 /2, for which the equilibrium phase diagram in both
gapped and pseudogapped cases only features a local mo-
ment fixed point, the real-time dynamics for charge degrees
of freedom turns out to be rather intriguing. In particular, we
distinguish two regimes depending on whether the amount of

work done during the quench, W̄, is large or small with re-
spect to typical energy scale in the DoS. In the former case,
we observe a rather fast dynamics, which may give rise to
thermalization, while in the latter case, a much slower dy-
namics that prevent us from drawing definite conclusions on
the long-time behavior. The investigation of real-time dy-
namics in this class of quantum impurity models represents,
in this perspective, a very intriguing and challenging open
problem.
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APPENDIX: CONTOUR-ORDERED HYBRIDIZATION
FUNCTION

In this appendix, we discuss with some more details the
contour-ordered hybridization function i�C�t , t�� we have in-
troduced in the text, which is the basic object entering the
hybridization expansion on the Kadanoff-Baym-Keldysh
contour C. This function encodes the effect of the bath on the
impurity degrees of freedom, as it clearly appears in the ef-
fective action formulation of the theory. As we have shown
in Sec. III, in the case of a quantum impurity coupled to an
equilibrium fermionic bath the hybridization function
i�C�t1 , t2� can be written as

i�C�t1,t2� � �
k

Vk
2�TCfk�t1�fk

†�t2��bath, �A1�

while in general, i.e., for out of equilibrium fermionic baths,
a parametrization of this function in terms of time indepen-
dent Anderson impurity Hamiltonian is not possible. From
the previous expression we see that i�C�t1 , t2� is given by the
contour-ordered bath Green’s function evaluated at the impu-
rity site. The meaning of this function is the following. We
consider a bath of free fermionic excitations in equilibrium at
temperature T, whose Hamiltonian generally reads

Hbath = �
ka

�kfka
† fka. �A2�

We take as initial density matrix �0 the statistical one,

�in =
e−�Hbath

Z
, �A3�

and define the contour-ordered bath Green’s function as

gka�t,t�� = − i�TC�fka�t�fka
† �t����, t,t� � C , �A4�

where both time arguments t and t� live on the three branch
contour C, while the average is taken over the initial density
matrix. The contour time ordering TC acts as described in the
main text, namely, ordering operators according to their time
argument on the contour C. Concerning the contour-time
evolution of creation and annihilation operators it is defined
as usual

fka�t� = eiHbatht fkae−iHbatht. �A5�

We now discuss the possible time orderings arising from
the choice of t and t� along the contour C, which naturally
lead to a 3
3 matrix structure for the contour-ordered hy-
bridization function.

i�C�t,t�� → i�ab�t,t�� a,b = 1,2,3. �A6�
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1. Matsubara Sector

When both arguments live on the imaginary time axis,
namely, t=−i� and t�=−i��, we recover the standard Matsub-
ara Green’s function, a part from the i-factor

gka
33��,��� = − i�T��fka���fka

† ������ . �A7�

We note this function is ant periodic and time-translational
invariant, therefore we can set ��=0 and compute it in the
interval �� �0,��. We obtain for the hybridization function
the standard result used also in equilibrium diagMC

�33��� = − i
 d�

�
����n���e−��, �A8�

where n��� is the Fermi distribution function and we had
explicitly introduced the energy-dependent the hybridization
����

���� = ��
k

�Vk�2��� − �k� . �A9�

2. Keldysh Sector

When t and t� are both on real-time branches we are in the
Keldysh subspace. The Green’s function acquires a 2
2 ma-
trix form, depending on the branch position �a ,b=1,2� of
the two time arguments, and consequently also the hybrid-
ization function in Eq. �A1� can be written as a matrix

�ab�t,t�� = 	�11�t,t�� �12�t,t��
�21�t,t�� �22�t,t��

� . �A10�

In particular, when t is greater/lesser than t� on the contour
we get the �21 /�12 component, which reads, respectively,

�21�t,t�� =
 d�

�
�����1 − nF����e−i��t−t�� �A11�

and

�12�t,t�� = −
 d�

�
����nF���e−i��t−t��. �A12�

On the contrary when the two times are on the same branch
we obtain the time-ordered �11 or antitime ordered �12 hy-
bridization function, which reduce to the off-diagonal ones
depending on the time interval, namely,

�11�t,t�� = �t � t� �21�t,t��
t 	 t� �12�t,t��� �A13�

and

�22�t,t�� = �t � t� �12�t,t��
t 	 t� �21�t,t��� . �A14�

We note that, by construction, since we are considering a
time independent quantum impurity model, all the four
Keldysh components only depend on time differences t− t�.
This property is peculiar of a bath, which is in thermal equi-
librium, and do not hold in general for other kinds of non-
equilibrium driving protocols or in the case we are solving
nonequilibrium DMFT.

3. Mixed sector

Finally, we have to consider the case in which the two
time arguments live in different sectors. These mixed hybrid-
ization functions usually take into account the short-time
memory effects, namely, the transient correlations due to the
chosen initial density matrix. We can distinguish two cases,
depending on whether t� Ct� or vice versa. In the former
case, namely, when t=−i� is on the Matsubara branch while
t� lies on the Keldysh branches we have

�31��,t�� = −
 d�

�
�����1 − nF����e−��e−i�t� �A15�

as well as

�32��,t�� = −
 d�

�
�����1 − nF����e−��e−i�t�. �A16�

We note that in this case, as usual for off-diagonal terms, the
contour-time ordering is fixed independently from the values
of the time arguments since the Keldysh branches are always
lesser on the contour C than the imaginary branch. Moreover,
we note there is no difference in the value of the hybridiza-
tion function if the real-time is placed on the upper or lower
branch, namely,

�31��,t�� = �32��,t�� . �A17�

As opposite, when t lies on the Keldysh contour while
t�=−i�� is on the Matsubara branch we obtain the other two
mixed components

�13�t,��� = −
 d�

�
����nF���e���e−i�t = �23�t,��� .

�A18�
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